(англ. neutron, от лат. neuter - ни тот, ни другой; символ n)
нейтральная (не обладающая электрическим зарядом) элементарная частица со спином
1/
2 (в единицах постоянной Планка
ħ) и массой, незначительно превышающей массу протона. Из протонов и Н. построены все ядра атомные (См.
Ядро атомное)
. Магнитный момент Н. равен примерно двум ядерным
Магнетонам и отрицателен, т. е. направлен противоположно механическому, спиновому, моменту количества движения. Н. относятся к классу сильно взаимодействующих частиц (адронов) и входят в группу барионов, т. е. обладают особой внутренней характеристикой - барионным зарядом (См.
Барионный заряд)
, равным, как и у протона (р), + 1. Н. были открыты в 1932 английским физиком Дж.
Чедвиком
, который установил, что обнаруженное немецкими физиками В. Боте и Г. Бекером проникающее излучение, возникающее при бомбардировке атомных ядер (в частности, бериллия) α-частицами, состоит из незаряженных частиц с массой, близкой к массе протона.
Н. устойчивы только в составе стабильных атомных ядер. Свободный Н. - нестабильная частица, распадающаяся на протон, электрон (е
-) и электронное антинейтрино
:
среднее время жизни Н. τ ≈ 16
мин. В веществе свободные Н. существуют ещё меньше (в плотных веществах единицы - сотни
мксек) вследствие их сильного поглощения ядрами. Поэтому свободные Н. возникают в природе или получаются в лаборатории только в результате ядерных реакций (см.
Нейтронные источники)
. В свою очередь, свободный Н. способен взаимодействовать с атомными ядрами, вплоть до самых тяжёлых; исчезая, Н. вызывает ту или иную ядерную реакцию, из которых особое значение имеет деление тяжёлых ядер, а также радиационный захват Н., приводящий в ряде случаев к образованию радиоактивных изотопов. Большая эффективность Н. в осуществлении ядерных реакций, своеобразие взаимодействия с веществом совсем медленных Н. (резонансные эффекты, дифракционное рассеяние в кристаллах и т.п.) делают Н. исключительно важным орудием исследования в ядерной физике и физике твёрдого тела. В практических приложениях Н. играют ключевую роль в ядерной энергетике (См.
Ядерная энергетика) производстве трансурановых элементов и радиоактивных изотопов (искусственная радиоактивность), а также широко используются в химическом анализе (
Активационный анализ) и в геологической разведке (
Нейтронный каротаж)
.
В зависимости от энергии Н. принята их условная классификация: ультрахолодные Н. (до 10
-7 эв)
, очень холодные (10
-7-10
-4 эв), холодные (10
-4-5․10
-3 эв)
, тепловые (5․10
-3-0,5 эв), резонансные (0,5-10
4 эв)
, промежуточные (10
4-10
5 эв)
, быстрые (10
5-10
8 эв)
, высокоэнергичные (10
8-10
10 эв) и релятивистские (≥ 10
10 эв); все Н. с энергией до 10
5 эв объединяют общим названием
Медленные нейтроны.
Основные характеристики нейтронов
Масса. Наиболее точно определяемой величиной является разность масс Н. и протона: mn - mр = (1,29344 ± 0,00007) Мэв, измеренная по энергетическому балансу различных ядерных реакций. Из сопоставления этой величины с массой протона получается (в энергетических единицах)
mn = (939,5527 ± 0,0052) Мэв;
это соответствует mn ≈ 1,6·10-24 г, или mn ≈ 1840 mе, где mе - масса электрона.
Спин и статистика. Значение
1/
2 для спина Н. подтверждается большой совокупностью фактов. Непосредственно спин был измерен в опытах по расщеплению пучка очень медленных Н. в неоднородном магнитном поле. В общем случае пучок должен расщепиться на 2
J + 1 отдельных пучков, где
J - спин Н. В опыте наблюдалось расщепление на 2 пучка, откуда следует, что
J =
1/
2. Как частица с полуцелым спином, Н. подчиняется Ферми - Дирака статистике (См.
Ферми - Дирака статистика) (является фермионом); независимо это было установлено на основе экспериментальных данных по строению атомных ядер (см.
Ядерные оболочки)
.
Электрический заряд нейтрона Q = 0. Прямые измерения Q по отклонению пучка Н. в сильном электрическом поле показывают, что, по крайней мере, Q < 10-17e, где е - элементарный электрический заряд, а косвенные измерения (по электрической нейтральности макроскопических объёмов газа) дают оценку Q < 2·10-22 е.
Другие квантовые числа нейтрона. По своим свойствам Н. очень близок протону: n и р имеют почти равные массы, один и тот же спин, способны взаимно превращаться друг в друга, например в процессах
Бета-распада
; они одинаковым образом проявляют себя в процессах, вызванных сильным взаимодействие (См.
Сильные взаимодействия)
, в частности
Ядерные силы, действующие между парами р-р, n-p и n-n, одинаковы (если частицы находятся соответственно в одинаковых состояниях). Такое глубокое сходство позволяет рассматривать Н. и протон как одну частицу - нуклон, которая может находиться в двух разных состояниях, отличающихся электрическим зарядом
Q. Нуклон в состоянии с
Q = + 1 есть протон, с
Q = 0
- Н. Соответственно, нуклону приписывается (по аналогии с обычным спином) некоторая внутренняя характеристика - изотонический спин
I, равный
1/
2, "проекция" которого может принимать (согласно общим правилам квантовой механики) 2
I + 1 = 2 значения: +
1/
2 и -
1/
2. Т. о., n и р образуют изотопический дублет (см.
Изотопическая инвариантность)
: нуклон в состоянии с проекцией изотопического спина на ось квантования +
1/
2 является протоном, а с проекцией -
1/
2 - Н. Как компоненты изотопического дублета, Н. и протон, согласно современной систематике элементарных частиц, имеют одинаковые квантовые числа: барионный заряд
В =+ 1,
Лептонный заряд L = 0,
Странность S = 0 и положительную внутреннюю
Чётность. Изотопический дублет нуклонов входит в состав более широкой группы "похожих" частиц - так называемый октет барионов с
J =
1/
2,
В = 1 и положительной внутренней чётностью; помимо n и р в эту группу входят Λ
-, Σ
±-, Σ
0-, Ξ
--, Ξ
0- Гипероны, отличающиеся от n и р странностью (см.
Элементарные частицы)
.
Магнитный дипольный момент нейтрона, определённый из экспериментов по ядерному магнитному резонансу, равен:
μn = - (1,91315 ± 0,00007) μя,
где μ
я=5,05․10
-24 эрг/гс - ядерный магнетон. Частица со спином
1/
2, описываемая
Дирака уравнением
, должна обладать магнитным моментом, равным одному магнетону, если она заряжена, и нулевым, если не заряжена. Наличие магнитного момента у Н., так же как аномальная величина магнитного момента протона (μ
р = 2,79μ
я), указывает на то, что эти частицы имеют сложную внутреннюю структуру, т. е. внутри них существуют электрические токи, создающие дополнительный "аномальный" магнитный момент протона 1,79μ
я и приблизительно равный ему по величине и противоположный по знаку магнитный момент Н. (-1,9μ
я) (см. ниже)
.
Электрический дипольный момент. С теоретической точки зрения, электрический дипольный момент
d любой элементарной частицы должен быть равен нулю, если взаимодействия элементарных частиц инвариантны относительно обращения времени (См.
Обращение времени) (Т-инвариантность). Поиски электрического дипольного момента у элементарных частиц являются одной из проверок этого фундаментального положения теории, и из всех элементарных частиц, Н. - наиболее удобная частица для таких поисков. Опыты по методу магнитного резонанса на пучке холодных Н. показали, что
dn < 10
-23 см·e. Это
означает, что сильное, электромагнитное и слабое взаимодействия с большой точностью
Т-инвариантны.
Взаимодействия нейтронов
Н. участвуют во всех известных взаимодействиях элементарных частиц - сильном, электромагнитном, слабом и гравитационном.
Сильное взаимодействие нейтронов. Н. и протон участвуют в сильных взаимодействиях как компоненты единого изотопического дублета нуклонов. Изотопическая инвариантность сильных взаимодействий приводит к определённой связи между характеристиками различных процессов с участием Н. и протона, например эффективные сечения рассеяния π+-мезона на протоне и π--мезона на Н. равны, так как системы π+р и π-n имеют одинаковый изотопический спин I = 3/2 и отличаются лишь значениями проекции изотопического спина I3 (I3 = + 3/2 в первом и I3 = - 3/2 во втором случаях), одинаковы сечения рассеяния К+ на протоне и К°на Н, и т.п. Справедливость такого рода соотношений экспериментально проверена в большом числе опытов на ускорителях высокой энергии. [Ввиду отсутствия мишеней, состоящих из Н., данные о взаимодействии с Н. различных нестабильных частиц извлекаются главным образом из экспериментов по рассеянию этих частиц на дейтроне (d) - простейшем ядре, содержащем Н.]
При низких энергиях реальные взаимодействия Н. и протонов с заряженными частицами и атомными ядрами сильно различаются из-за наличия у протона электрического заряда, обусловливающего существование дальнодействующих кулоновских сил между протоном и др. заряженными частицами на таких расстояниях, на которых короткодействующие ядерные силы практически отсутствуют. Если энергия столкновения протона с протоном или атомным ядром ниже высоты кулоновского барьера (которая для тяжелых ядер порядка 15
Мэв)
, рассеяние протона происходит в основном за счёт сил электростатического отталкивания, не позволяющих частицам сблизиться до расстояний порядка радиуса действия ядерных сил. Отсутствие у Н. электрического заряда позволяет ему проникать через электронные оболочки атомов и свободно приближаться к атомным ядрам. Именно это обусловливает уникальную способность Н. сравнительно малых энергий вызывать различные ядерные реакции, в том числе реакцию деления тяжёлых ядер. О методах и результатах исследований взаимодействия Н. с ядрами см. в статьях
Медленные нейтроны,
Нейтронная спектроскопия,
Ядра атомного деление, Рассеяние медленных Н. на протонах при энергиях вплоть до 15
Мэв сферически симметрично в системе центра инерции. Это указывает на то, что рассеяние определяется взаимодействием n - р в состоянии относительного движения с орбитальным моментом количества движения
l = 0 (так называемая
S-волна). Рассеяние в
S-cocтоянии является специфически квантовомеханическим явлением, не имеющим аналога в классической механике. Оно превалирует над рассеянием в др. состояниях, когда де-бройлевская длина волны Н.
порядка или больше радиуса действия ядерных сил (ħ - постоянная Планка, v - скорость Н.). Поскольку при энергии 10 Мэв длина волны Н.
эта особенность рассеяния Н. на протонах при таких энергиях непосредственно даёт сведения о порядке величины радиуса действия ядерных сил. Теоретическое рассмотрение показывает, что рассеяние в
S-cocтоянии слабо зависит от детальной формы потенциала взаимодействия и с хорошей точностью описывается двумя параметрами: эффективным радиусом потенциала
r и так называемой длиной рассеяния
а. Фактически для описания рассеяния n - р число параметров вдвое больше, так как система np может находиться в двух состояниях, обладающих различными значениями полного спина:
J = 1 (триплетное состояние) и
J = 0 (синглетное состояние). Опыт показывает, что длины рассеяния Н. протоном и эффективные радиусы взаимодействия в синглетном и триплетном состояниях различны, т. е. ядерные силы зависят от суммарного спина частиц, Из экспериментов следует также, что связанное состояние системы np (ядро дейтерия) может существовать лишь при суммарном спине 1, в то время как в синглетном состоянии величина ядерных сил недостаточна для образования связанного состояния Н. - протон. Длина ядерного рассеяния в синглетном состоянии, определённая из опытов по рассеянию протонов на протонах (два протона в
S-cocтоянии, согласно
Паули принципу
, могут находиться только в состоянии с нулевым суммарным спином), равна длине рассеяния n-p в синглетном состоянии. Это согласуется с изотопической инвариантностью сильных взаимодействий. Отсутствие связанной системы пр в синглетном состоянии и изотопическая инвариантность ядерных сил приводят к выводу, что не может существовать связанной системы двух Н. - так называемый бинейтрон (аналогично протонам, два Н. в
S-cocтоянии должны иметь суммарный спин, равный нулю). Прямых опытов по рассеянию n-n не проводилось ввиду отсутствия нейтронных мишеней, однако, косвенные данные (свойства ядер) и более непосредственные - изучение реакций
3H +
3H →
4He + 2n, π
- + d → 2n + γ - согласуются с гипотезой изотопической инвариантности ядерных сил и отсутствием бинейтрона. [Если бы существовал бинейтрон, то в этих реакциях наблюдались бы при вполне определенных значениях энергии пики в энергетических распределениях соответственно α-частиц (ядер
4He) и γ-квантов.] Хотя ядерное взаимодействие в синглетном состоянии недостаточно велико, чтобы образовать бинейтрон, это не исключает возможности образования связанной системы, состоящей из большого числа одних только Н. - нейтронных ядер. Этот вопрос требует дальнейшего теоретического и экспериментального изучения. Попытки обнаружить на опыте ядра из трёх-четырёх Н., а также ядра
4H,
5H,
6H не дали пока положительного результата, Несмотря на отсутствие последовательной теории сильных взаимодействий, на основе ряда существующих представлении можно качественно понять некоторые закономерности сильных взаимодействий и структуры Н. Согласно этим представлениям, сильное взаимодействие между Н. и др. адронами (например, протоном) осуществляется путём обмена виртуальными адронами (см.
Виртуальные частицы)
- π-мезонами, ρ-мезонами и др. Такая картина взаимодействия объясняет короткодействующий характер ядерных сил, радиус которых определяется комптоновской длиной волны (См.
Комптоновская длина волны) самого лёгкого адрона - π-мезона (равной 1,4․10
-13 см)
. Вместе с тем она указывает на возможность виртуального превращения Н. в др. адроны, например процесс испускания и поглощения π-мезона: n → p + π
- → n. Известная из опыта интенсивность сильных взаимодействий такова, что Н. подавляющее время должен проводить в подобного рода "диссоциированных" состояниях, находясь как бы в "облаке" виртуальных π-мезонов и др. адронов. Это приводит к пространственному распределению электрического заряда и магнитного момента внутри Н., физические размеры которого определяются размерами "облака" виртуальных частиц (см. также
Формфактор)
. В частности, оказывается возможным качественно интерпретировать отмеченное выше приблизительное равенство по абсолютной величине аномальных магнитных моментов Н. и протона, если считать, что магнитный момент Н. создаётся орбитальным движением заряженных π
--мезонов, испускаемых виртуально в процессе n → p + π
- → n, а аномальный магнитный момент протона - орбитальным движением виртуального облака π
+-мезонов, создаваемого процессом р → n + π
+ → р.
Электромагнитные взаимодействия нейтрона. Электромагнитные свойства Н. определяются наличием у него магнитного момента, а также существующим внутри Н. распределением положительного и отрицательного зарядов и токов. Все эти характеристики, как следует из предыдущего, связаны с участием Н. в сильном взаимодействии, обусловливающем его структуру. Магнитный момент Н. определяет поведение Н. во внешних электромагнитных полях: расщепление пучка Н. в неоднородном магнитном поле, прецессию спина Н. Внутренняя электромагнитная структура Н. проявляется при рассеянии электронов высокой энергии на Н. и в процессах рождения мезонов на Н. γ
-квантами (фоторождение мезонов). Электромагнитные взаимодействия Н. с электронными оболочками атомов и атомными ядрами приводят к ряду явлений, имеющих важное значение для исследования строения вещества. Взаимодействие магнитного момента Н. с магнитными моментами электронных оболочек атомов проявляется существенно для Н., длина волны которых порядка или больше атомных размеров (энергия
Е < 10
эв)
, и широко используется для исследования магнитной структуры и элементарных возбуждений (спиновых волн (См.
Спиновые волны))
магнитоупорядоченных кристаллов (см.
Нейтронография)
. Интерференция с ядерным рассеянием позволяет получать пучки поляризованных медленных Н. (см.
Поляризованные нейтроны)
.
Взаимодействие магнитного момента Н. с электрическим полем ядра вызывает специфическое рассеяние Н., указанное впервые американским физиком Ю. Швингером и потому называемое "швингеровским". Полное сечение этого рассеяния невелико, однако при малых углах (Нейтрон 3°) оно становится сравнимым с сечением ядерного рассеяния; Н., рассеянные на такие углы, в сильной степени поляризованы.
Взаимодействие Н. - электрон (n-e), не связанное с собственным или орбитальным моментом электрона, сводится в основном к взаимодействию магнитного момента Н. с электрическим полем электрона. Другой, по-видимому меньший, вклад в (n-e)-взаимодействие может быть обусловлен распределением электрических зарядов и токов внутри Н. Хотя (n-e)-взаимодействие очень мало, его удалось наблюдать в нескольких экспериментах.
Слабое взаимодействие нейтрона проявляется в таких процессах, как распад Н.:
захват электронного антинейтрино протоном:
и мюонного нейтрино (ν
μ) нейтроном: ν
μ + n → р + μ
-, ядерный захват мюонов: μ
- + р → n + ν
μ, распады странных частиц (См.
Странные частицы)
, например Λ → π° + n, и т.д.
Гравитационное взаимодействие нейтрона. Н. - единственная из имеющих массу покоя элементарных частиц, для которой непосредственно наблюдалось гравитационное взаимодействие - искривление в поле земного тяготения траектории хорошо коллимированного пучка холодных Н. Измеренное гравитационное ускорение Н. в пределах точности эксперимента совпадает с гравитационным ускорением макроскопических тел.
Нейтроны во Вселенной и околоземном пространстве
Вопрос о количестве Н. во Вселенной на ранних стадиях её расширения играет важную роль в космологии. Согласно модели горячей Вселенной (см.
Космология)
, значительная часть первоначально существовавших свободных Н. при расширении успевает распасться. Часть Н., которая оказывается захваченной протонами, должна в конечном счёте привести приблизительно к 30\%-ному содержанию ядер Не и 70\%-ному - протонов. Экспериментальное определение процентного состава He во Вселенной - одна из критических проверок модели горячей Вселенной.
Эволюция звёзд в ряде случаев приводит к образованию нейтронных звёзд (См.
Нейтронные звёзды)
, к числу которых относятся, в частности, так называемые
Пульсары.
В первичной компоненте космических лучей (См.
Космические лучи) Н. в силу своей нестабильности отсутствуют. Однако взаимодействия частиц космических лучей с ядрами атомов земной атмосферы приводят к генерации Н. в атмосфере. Реакция
14N (n, р)
14С, вызываемая этими Н., - основной источник радиоактивного изотопа углерода
14C в атмосфере, откуда он поступает в живые организмы; на определении содержания
14C в органических остатках основан радиоуглеродный метод геохронологии (См.
Геохронология)
. Распад медленных Н., диффундирующих из атмосферы в околоземное космическое пространство, является одним из основных источников электронов, заполняющих внутреннюю область радиационного пояса Земли (См.
Радиационные пояса Земли)
.
Лит.: Власов Н. А., Нейтроны, 2 изд., М., 1971; Гуревич И. И., Тарасов Л. В., Физика нейтронов низких энергий, М., 1965.
Ф. Л. Шапиро, В. И. Лущиков.